
Fast Stencil-Code Computation on a
Wafer-Scale Processor

Kamil Rocki∗, Dirk Van Essendelft†, Ilya Sharapov∗, Robert Schreiber∗, Michael Morrison∗,
Vladimir Kibardin∗, Andrey Portnoy∗, Jean Francois Dietiker†‡, Madhava Syamlal† and Michael James∗

∗ Cerebras Systems Inc., Los Altos, California, USA
Email: {kamil,michael}@cerebras.net

† National Energy Technology Laboratory, Morgantown, West Virginia, USA
Email: dirk.vanessendelft@netl.doe.gov

‡ Leidos Research Support Team, Pittsburgh, Pennsylvania, USA
Email: jean.dietiker@netl.doe.gov

Abstract—The performance of CPU-based and GPU-
based systems is often low for PDE codes, where large,
sparse, and often structured systems of linear equations
must be solved. Iterative solvers are limited by data
movement, both between caches and memory and between
nodes. Here we describe the solution of such systems of
equations on the Cerebras Systems CS-1, a wafer-scale
processor that has the memory bandwidth and communica-
tion latency to perform well. We achieve 0.86 PFLOPS on a
single wafer-scale system for the solution by BiCGStab of a
linear system arising from a 7-point finite difference stencil
on a 600× 595× 1536 mesh, achieving about one third of
the machine’s peak performance. We explain the system,
its architecture and programming, and its performance on
this problem and related problems. We discuss issues of
memory capacity and floating point precision. We outline
plans to extend this work towards full applications.

Index Terms—Algorithms for numerical methods and
algebraic systems, Computational fluid dynamics and
mechanics, Multi-processor architecture and micro-
architecture

I. INTRODUCTION

The need for high memory bandwidth is captured by
a problem’s arithmetic intensity, the number of opera-
tions performed on each datum loaded from memory.
Solvers of partial differential equations by finite differ-
ence, element, or volume methods have low intensity, as
they make repeated sweeps over meshes. Performance
for them on CPU or GPU based systems suffers due
to insufficient bandwidths. For example, on the high-
performance conjugate gradient (HPCG) benchmark, the
top 20 performing supercomputers achieve only 0.5% -
3.1% of their peak floating point performance [1]. For
HPCG as for many HPC kernels and real applications,

limited memory bandwidth and high communication
latency are primary performance limiters.

HPC memory and communication systems struggle
to keep up with processing performance. In 2016 the
flops to words ratios for both memory and interconnect
bandwidth were in the hundreds, and the flops needed
to cover the memory or network latencies were in the
10,000 to 100,000 range, with the trend going higher;
see Figure 1.

Fig. 1. The growing gulf in flops per word (memory, interconnect) of
conventional CPUs and clusters, and the impact of wafer-scale inte-
gration. (Figure courtesy of John McCalpin [2], used with permission.
CS-1 data point added by us.)

The recent introduction of wafer-scale processors
promises to change this situation. The Cerebras Systems
CS-1, a system whose compute and memory resources
are all fabricated in a single 462 cm2 silicon wafer, can
move three bytes to and from memory for every flop.
This is achieved in a highly parallel, distributed memory

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

ar
X

iv
:2

01
0.

03
66

0v
1

 [
cs

.D
C

]
 7

 O
ct

 2
02

0

architecture in which all memory is on the same silicon
wafer as the processing, providing orders of magnitude
more memory bandwidth, single cycle memory latency,
and lower energy cost for memory access. There are 18
GB of on-wafer memory. The memory on the wafer is
fast, static random-access memory (SRAM). Processing
elements are interconnected by an on-the-wafer network
with injection bandwidth one fourth of the peak float-
ing point compute bandwidth and with nanosecond per
hop message latencies. Thus, on the CS-1, memory
bandwidth matches the peak compute rate, and com-
munication bandwidth is only slightly lower. The CS-1,
as shown in Figure 1, sits at the desirable bottom on
the flops per access scale, a region that becomes ever
farther away as single chip systems are pushed towards
greater on chip capability with the hard limits of off-chip
communication.

Here we demonstrate the potential for wafer-scale
systems to achieve breakthrough performance on regular
mesh finite difference (stencil) problems that can fit in
the on-wafer memory, by giving some examples of the
implementation and performance of model problems on
the CS-1. We have implemented a BiCGStab solver for
a linear system arising from the 7-point discretization of
a PDE on a 3D mesh. The solver achieves performance
of 0.86 PFLOPS in mixed precision floating point that
uses 16-bit for all arithmetic except the inner products
and a mixed precision inner product with 16-bit multiply
and 32-bit add. The achieved performance per Watt (at
20 kW) and for the size of the machine (1/3 rack)
are beyond what has been reported for conventional
machines on comparable problems.

We describe the system, the processing core architec-
ture, the programming model, and our implementation of
BiCGStab in that model. We discuss the implementation
of the global reductions required for, among other things,
the inner products common to all Krylov subspace linear
solvers that are often a bottleneck in large-scale message-
passing implementations. Because on-wafer communica-
tion has low latency, our AllReduce (to use the MPI
term) for scalars takes under 1.5 microseconds for a
system of about 380,000 independent, interconnected
processors. We then present and validate a simple perfor-
mance model, and use it to predict the effect of changing
mesh size and shape and of an implementation for a
problem arising from a large two-dimensional mesh.

Then we talk about the limitations of this experiment
and potential extensions to more complex and realistic
applications. We sketch a proposed implementation of
the NETL1 code, MFIX, for modeling combustion or
chemical reactions of solid particles (e.g., fuels, sorbents)
transported in a fluid. The performance projections for

1National Energy Technology Laboratory

MFIX indicate that real-time, highly resolved simula-
tion will be possible, opening many opportunities for
practical applications that demand both high fidelity and
speed.

We then consider issues of floating point arithmetic
precision and show the accuracy achieved with mixed
(16/32) and higher precision for this problem.

Finally, we discuss the limitation of the single-wafer
solution (a limited amount of memory), pointing out
situations where the speed is critical and the size is
adequate, and indicating the evolution of the technology
towards greater capacity.

II. THE CS-1 WAFER SCALE ENGINE

Cerebras Systems, formed in 2016, has designed and
brought to market the industry’s first wafer-scale sys-
tem [3]. All compute and memory resources of the CS-1
are contained on the Wafer-Scale Engine, a 462 cm2

silicon wafer. The wafer also contains a powerful com-
munication network; see Figure 2. The system comprises
380,000 processor cores, each with 48 KB of dedicated
SRAM memory (for a total of 18GB); up to eight 16-bit
floating point operations per cycle; 16 bytes of read and 8
bytes of write bandwidth to the memory per cycle; a 2D
mesh interconnection fabric with 16 bytes of injection
bandwidth per core per cycle; and a total system power
of 20 kW.

A. Architecture

The CS-1 wafer is an MIMD, distributed-memory
machine with a 2D-mesh interconnection fabric. The
repeated element of the architecture is called a tile. The
tile contains one processor core, its memory, and the
router that it connects to. The routers link to the routers
of the four neighboring tiles. Figure 2 illustrates the
layout.

The wafer contains a 7×12 array of 84 identical “die.”
A die holds thousands of tiles. Ordinary chips are made
by cutting the wafer into individual die; in the WSE, the
die are instead connected by extending the interconnect
across the "scribe lines", the spaces between die.

The memory, functional units, and instruction set are
designed for high throughput numerical computation.
The roughly 380,000 tiles each have their own fast
SRAM memory. There is no shared memory. Local
memory is 48 KB, which totals 18 GB across the wafer.
The load-to-use latency is one cycle.

The instruction set supports operations on 16-bit inte-
ger, 16-bit (IEEE fp16), and 32-bit (IEEE fp32) floating
point types. Floating point adds, multiplies, and fused
multiply-accumulate (or FMAC, with no rounding of the
product prior to the add) can occur in a 4-way SIMD
manner for 16-bit operands. The instruction set supports
SIMD operations across subtensors of four dimensional

Wafer Scale EngineSingle dieSingle tile

Router

Control

Scheduler

x

i
[i]

w

y

y

DSR
file

FMAC

Memory

NSEW

NSEW

Core

51 tiles

89
 ti

le
s

7
di

es

12 dies

Fig. 2. CS-1 Wafer Scale Engine (WSE). A single wafer (rightmost) contains one CS-1 processor. Each processor is a collection of dies arranged
in a 2D fashion (middle). Dies are then further subdivided into a grid of tiles. One die hosts thousands of computational cores, memory and
routers (leftmost). There is no logical discontinuity between adjacent dies and there is no additional bandwidth penalty for crossing the die-die
barrier. In total, there are 1.2 trillion transistors in an area of 462.25 cm2.

tensors, making use of tensor address generation hard-
ware to efficiently access tensor data in memory. These
play the role of nested loops and eliminate any loop
overhead. There are enough memory banks to provide
the bandwidth needed to fetch eight 16-bit words from
memory and store four such words per cycle, enough
to support SIMD-4, AXPY operations y = y + a × x,
where the operand a is a scalar held in a register and x
and y are tensors that stream to and from memory. Such
an operation can be launched with a single instruction.
The tensor operands can have more than four elements,
so the instruction executes for multiple cycles.

In mixed precision with multiplications in fp16 and
additions performed in fp32, the throughput is two
FMACs per core per cycle. Purely 32-bit floating point
computations run one FMAC per core per cycle. The
theoretical peak performance of the system varies de-
pending on the number of cores configured on the wafer,
clock rate and power settings.

The core connects to a local router that has five bidi-
rectional links, one to each of its four nearest neighbors
and one to its own core. The router can move data into
and out of these five links, in parallel, on every cycle.
Even with scalar granularity, communication is efficient.
The router has hardware queues for its connection to
the core and for each of a set of virtual channels,
avoiding deadlock. Communication between potentially
distant processors occurs along predetermined routes.
Routing is configured offline, as part of compilation;
data travel along virtual channels that can be program-
matically reconfigured at run time. The fanout of data
to multiple destinations is done through the routing; the
router can forward an input word to any subset of its

five output ports. There is no runtime software involved
with communication. Arriving data are deposited by the
hardware directly into memory or registers or routed to
functional units as specified by the program.

An instruction with tensor operands can run syn-
chronously or, at the discretion of the programmer, as
a background thread that shares the datapath with other
threads including the main one. A background thread
runs a single tensor operation, as a single asynchronously
running instruction. There is no context switch overhead.
The registers and memory used by an asynchronous
thread are those assigned by the programmer or compiler
in the instruction, and these may not be overwritten until
the thread terminates. Subsequent computation can be
delayed until the thread terminates. The core supports
nine concurrent threads of execution.

A stream of data to or from the fabric may be used
as an input to a tensor operation, or as the destination
for one. The hardware directly implements scheduling
activities that would normally be performed by an oper-
ating system. This allows compact and efficient software
implementations. For example, one core can be sending
data from its local memory to another core; simultane-
ously it can receive data from another core while adding
it to values stored in its local memory. All of this is
accomplished using only two machine instructions that
run as independent threads.

Code consists of tasks that react to events. Tasks are
triggered by other tasks, or by arriving data words. The
channel of the arriving word determines the code that is
triggered. There is little delay between the completion
of a task and the start of a subsequent task, as this is
handled in hardware. Together with the SIMD operations

of the instruction set, this efficient scalar-data-triggered
method of operation allows us to implement distributed
linear algebra kernels, such as those used in machine
learning and the iterative linear solver discussed here,
with minimal performance impact from message latency
and bandwidth. Special purpose Data Structure Registers
(DSRs) generate tensor access addresses in hardware
eliminating overheads of nested loops.

III. THE BICGSTAB METHOD

Discretized partial differential equations lead to sys-
tems of linear equations

Ax = b (1)

that are commonly solved using Krylov subspace it-
erative methods such as the conjugate gradient (CG)
method. The Biconjugate Gradient Method [4] extends
CG to nonsymmetric systems. The stabilized version
of the method, BiCGStab [5] (Algorithm 1), makes
it numerically stable (and uses four dot products per
iteration instead of two). The kernel operations in the
algorithm are sparse matrix - dense vector multiply
(SpMV), AXPY (y = y + ax for vectors x and y
and scalar a), and inner product. In SpMV, each matrix
element is involved in only one multiply-add operation;
thus the arithmetic intensity is low.

Algorithm 1 Standard BiCGStab
1: function BICGSTAB(A, b, x0)
2: r0 := b, p0 := r0
3: for i = 0,1,2, ... do
4: si := Api
5: αi :=

(r0,ri)
(r0,si)

6: qi := ri − αisi
7: yi := Aqi
8: ωi :=

(qi,yi)
(yi,yi)

9: xi := xi + αipi + ωiqi
10: ri+1 := qi − ωiyi
11: βi :=

αi

ωi

(r0,ri+1)
(r0,ri)

12: pi+1 := ri+1 + βi(pi − ωisi)
13: end for
14: end function

IV. MAPPING BICGSTAB TO THE CS-1

The CS-1 architecture provides a good match to the
compute, memory, and communication needs of Krylov
subspace methods, especially on a regular mesh. We map
our test case’s regular 3D mesh to the 2D machine in a
straightforward domain decomposition manner. Let the
mesh be X × Y × Z. Then map X and Y across the
two axes of the fabric, with each core handling all of the
Z dimension (Figure 3). The mesh mapping dictates the
mapping of the vectors in the BiCGstab method as each

vector element is associated with one meshpoint. As to
the matrix A, we map the needed portion of its nonzero
diagonals to each core. A has seven nonzero diagonals;
but with diagonal preconditioning the main diagonal is
all ones. Therefore, we only store six other diagonals.
In addition to the elements of A, local portions of
four vectors must be stored to implement the BiCGstab
iteration. The vectors qi and ri+1 reuse the storage of si
and yi, leading to a storage requirement per core of 10Z
words. Thus, with Z = 1536 we are using about 31KB
out of 48KB for the matrix and vector data.

1) SpMV (3D): The SpMV implementation uses ar-
chitectural concepts that may be unfamiliar. To convey
how it works we provide a pseudocode listing (Lin-
sting 1) and a coordinated diagram showing the data
flow (Figure 4). The code allocates memory for vectors,
specifies the communication connectivity between tiles,
defines tensor descriptors, and specifies tasks and threads
that constitute a specification of data flow that is illus-
trated in the figure.

With the iterate vector v(x, y, z) mapped as shown in
Figure 3, each core stores a local iterate vector in an
array of v of length Z. The local result of the SpMV is
an array u of length Z computed as the sum of seven
vectors. Six of these are elementwise products of a vector
of matrix elements and a vector of iterate elements. Four
of the iterate vectors stream in from the neighboring
cores. Two are shifted-by-one (in the Z direction) copies
of the local iterate. Thus, to perform an SpMV we use
eight memory vectors.

Fig. 3. Three dimensional problem mapping to two dimensional fabric
of processing elements

The eight memory vectors, shown in gray, are declared
with the float16 keyword in the code. There are the
local iterate (v), the result vector (u), and six vectors
of matrix elements, denoted by coordinate directions (x,
y, z) and p or m to indicate plus or minus, according
to their role in the 7-point stencil. In order to make an
asynchronous

Listing 1. SpMV listing
/* CS-1 code that computes matrix-vector multiplication y = Ax

with a seven-point stencil matrix A preconditioned to have ones

on the main diagonal. */

/* Allocate storage for the various matrix and tensor elements.

The z-dimensions and y-result are padded with zeros to avoid

bounds checks in the code that follows. */

float16 xp[Z], xm[Z], yp[Z], ym[Z], zp[Z], zm[Z+1];

float16 v[Z+1], u[Z+2];

/* Allocate storage for FIFOs that store intermediate vector

product components prior to reduction by summation. We used a

FIFO depth of 20. */

float16 term[5][20];

/* Initialize DSRs with tensor descriptors for the access pattern.

We use a consecutive access pattern with an outer dimension

stride of zero to return the DSR to its initial position when

the operation is complete. */

tensor xp_a = {.base=xp, .shape={1,Z }, .stride={0,1} };

tensor xm_a = {.base=xm, .shape={1,Z }, .stride={0,1} };

tensor yp_a = {.base=yp, .shape={1,Z }, .stride={0,1} };

tensor ym_a = {.base=ym, .shape={1,Z }, .stride={0,1} };

tensor zp_a = {.base=zp, .shape={1,Z }, .stride={0,1} };

tensor zm_a = {.base=zm, .shape={1,Z+1}, .stride={0,1} };

/* Initialize (more) DSRs with FIFO descriptors to store

intermediate products. The FIFOs are configured to activate

certain tasks automatically when data is pushed. */

fifo xp_fifo={.start=term[0], .end=term[1], .onpush=sumtask};

fifo xm_fifo={.start=term[1], .end=term[2], .onpush=sumtask};

fifo yp_fifo={.start=term[2], .end=term[3], .onpush=sumtask};

fifo ym_fifo={.start=term[3], .end=term[4], .onpush=sumtask};

fifo zp_fifo={.start=term[4], .end=term[5], .onpush=sumtask};

/* Initialize (yet more) DSRs with descriptors that all alias the

same output y vector. During the course of execution, they will

advance asynchronously. Notice: accumulators for zp and zm

contributions are shifted by one. */

tensor xp_acc = {.base=u+1, .shape={1,Z}, .stride={0,1} };

tensor xm_acc = {.base=u+1, .shape={1,Z}, .stride={0,1} };

tensor yp_acc = {.base=u+1, .shape={1,Z}, .stride={0,1} };

tensor ym_acc = {.base=u+1, .shape={1,Z}, .stride={0,1} };

tensor zp_acc = {.base=u+2, .shape={1,Z}, .stride={0,1} };

tensor zm_acc = {.base=u+0, .shape={1,Z}, .stride={0,1} };

tensor c_acc = {.base=u+1, .shape={1,Z}, .stride={0,1} };

/* Initialize DSRs to traverse the local x vector. We use two

descriptors because we make two traversals from separate

threads concurrently. */

tensor v0 = {.base=v, .shape={1,Z+1}, .stride={0,1} };

tensor v1 = {.base=v, .shape={1,Z }, .stride={0,1} };

/* Hardware will schedule a task when it is activated and not

blocked. Initially we block SPMV completion tasks. Special

instructions block(), unblock(), activate() and machine events

such as completion of a background thread can manipulate these

task states. */

taskset sched_block = { xdone, ydone, cdone, xydone, xycdone };

taskset sched_activate = { };

task spmv {

/* Initialize DSRs as fabric I/O descriptors. Instructions that

use these descriptors are run by the hardware as background

threads in the specified thread slot. When the operation is

completed it can trigger a change in a task’s scheduling

status. These are initialized in spmv task because at the end

of the threads’ execution, the descriptors no longer have their

initial values. */

fabric xp_rx={.thr=0, .len=Z, .trig=xdone, .act=ACTIVATE};

fabric xm_rx={.thr=1, .len=Z, .trig=xdone, .act=UNBLOCK };

fabric yp_rx={.thr=2, .len=Z, .trig=ydone, .act=ACTIVATE};

fabric ym_rx={.thr=3, .len=Z, .trig=ydone, .act=UNBLOCK };

fabric zp_rx={.thr=4, .len=Z, .trig=cdone, .act=ACTIVATE};

fabric c_tx ={.thr=5, .len=Z};

fabric c_rx ={.thr=6, .len=Z, .trig=cdone, .act=UNBLOCK};

/* Finally, we see the first executable code. It is often the case

that most of the code specifies DSR setup and task

dependencies; the executable code itself is just the arithmetic

that operates over the above structure. */

/* Launch thread to send local vector to four neighbors and mirror

to ourselves. */

c_tx[] = v1[];

/* Initialize the output vector with x*zm. This runs in the main

thread and completes before any subsequent lines are executed */

zm_acc[] = v0[] * zm_a[];

/* Launch five threads write to FIFOs of vector length Z. */

xp_fifo[] = xp_rx[] * xp_a[];

xm_fifo[] = xm_rx[] * xm_a[];

yp_fifo[] = yp_rx[] * yp_a[];

ym_fifo[] = ym_rx[] * ym_a[];

zp_fifo[] = zp_rx[] * zp_a[];

/* Launch a thread to handle the main diagonal. Because the

diagonal is all ones there is no FIFO and no multiplication. */

c_acc[] = c_acc[] + c_rx[];

}

/* The FIFO write threads run asynchronously. When they push data

into a FIFO, they also activate a summation task. The summation

task reads all available data from the FIFOs sequentially,

adding the values to the result vector y. It is marked as

higher priority to avoid a race condition with the

synchronization task tree. The production code used two

distinct summation tasks to improve performance. */

task sumtask __priority__ {

xp_acc[] = xp_acc[] + xp_fifo[];

xm_acc[] = xm_acc[] + xm_fifo[];

zp_acc[] = zp_acc[] + zp_fifo[];

yp_acc[] = yp_acc[] + yp_fifo[];

ym_acc[] = ym_acc[] + ym_fifo[];

}

/* A small tree of completion tasks is used to make sure that all

threads of SPMV execution have completed before passing control

back to the BiCG solver. */

task xdone { block(xdone), unblock(xydone); }

task ydone { block(ydone), activate(xydone); }

task xydone { block(xydone), unblock(xycdone); }

task cdone { block(cdone), activate(xycdone); }

task xycdone { block(xycdone), activate(bicg); }

xp_fifo

x-1 x+1

y+1

y-1

x-1 x+1

y+1

y-1

thread 0

thread 1

spmvtask

X

Fabric
input

Fabric
output

+

+

+

+

+

sumtask
xp

xm

yp

ym

zp

zm

uv

In
-m

em
or

y
in

pu
ts

In-memory result

FIFOs
term[0]

term[1]

term[2]

term[3]

term[4]

v1

v0

Router

xp_a

xp_rx xp_fifo xp_acc

xm_fifo xm_acc

yp_fifo

ym_fifo

zp_fifo

yp_acc

ym_acc

zp_acc

thread 2

thread 3

thread 4

thread 5

xm_a

yp_a

ym_a

zp_a

c_accc_rx

zm_a

X

X

X

X

+

xm_fifo

yp_fifo

ym_fifo

zp_fifo

xm_rx

yp_rx

ym_rx

zp_rx

zm_acc
X

(write) (read)

(write) (read)

(write) (read)

(write) (read)

(write) (read)

c_tx

Fig. 4. Implementation of SpMV (u = Av). Shaded regions represent memory objects, annotated arrows are tensor descriptors, and white
boxes are tasks that perform computations. The diagram uses the names of objects in the code of Listing 1.

connection from multiplication threads to addition
threads, the code allocates five in-memory FIFOs to for-
ward the elementwise products of streaming vectors. The
instruction set supports hardware-managed, in-memory
FIFOs that use memory regions as circular buffers. The
core has special hardware registers to manage the state
(head and tail location, for example) of each FIFO. These
are the boxes labeled term[0] to term[4] in the figure
and the objects of fifo type in the listing.

Each core exchanges its local iterate vector v with
its four neighbors. The broadcast is performed using a
single communication channel that fans out to its four
neighbors. But the core receives vector segments on four
distinct channels, one corresponding to each of its four
neighbors, each consumed by a different background
thread handling the four incoming streams.

We allocate channel numbers to make all five of these
channels different at every tile. The assignment we used
is shown with color as a representative of channel in
Figure 5. Note that at every tile, the outgoing color (in
four directions) differs from each of the four incoming
colors.

Tensor descriptors are used in code to specify the
geometry of data and the stepping though it during
execution of vector instructions. In Figure 4 these de-

scriptors are annotations, such as xp_rx (meaning a
descriptor of a vector received from the neighbor in the
+x direction) next to the arrows between blocks. Some,
like xp_rx, are fabric tensor descriptors that indicate the
channel used to communicate this tensor as well as a
vector length or tensor shape; they are declared with the
fabric keyword in the code. A memory tensor descriptor
such as (xp_a in the figure and declared with the tensor
keyword) can point to a memory address and indicate
a length of Z and unit stride for tensors that reside in
memory.

So how does it work? There is one outgoing stream
(the arrow coming out of v, into the router, the dashed
box above), and five incoming streams: xm_rx, xp_rx,
ym_rx, yp_rx, and c_rx, which is the v data looped
back. (We loop back the outgoing local data and route
it in for processing the z dimension, as this saves
memory bandwidth, saving time.) The assignment state-
ment c_tx[] = v1[] launches a thread because in the
declaration of the fabric tensor c_tx, there is a thread
resource assigned (.thr = 5).

The job is started by a task, called spmv, that first
sends the local iterate to the fabric with the assignment
mentioned above. It then initializes the result as the
product of the zm_a memory vector and a shift-by-one,

v0, of the in-memory local iterate. This is done by
a tensor multiply instruction (denoted spmvtask in the
white box on top) specified by the statement zm_acc[]
= v0[] * zm_a[]. Since none of the tensor descriptors
has a thread assignment, this runs to completion before
spmv proceeds.

The task, spmv, then launches the six background
threads (in white boxes, denoted thread_0 through
thread_5) that do elementwise vector multiplication
as single SIMD instructions. These threads pull inputs
from the fabric; two of them, 4 and 5, pull the looped-
back local data. They send results to FIFOs (except for
thread 5).

After the main task has launched these background
threads, it may safely terminate. The threads it launched
continue to multiply and push elements of product vec-
tors into FIFOs.

Thread 5 simply adds its input to the result vector. It
doesn’t need to multiply, because it is working on the
main diagonal of the matrix, which is all ones.

The Cerebras hardware FIFOs have a distinctive
feature. They are able to activate tasks, in this case
sumtask, whenever they aren’t empty. This they do.
The hardware task scheduler runs sumtask (while the
threads continue to fill the FIFOs). It executes five vector
add instructions (as shown in the white box) that each
has one FIFO input. Each add pulls as much data as
it can from its input FIFO, finishing when empty. Their
destination tensor descriptors track their progress, so that
they add once to each of the result tensor. So sumtask
is invoked repeatedly, pulling from the FIFOs, allowing
the upstream threads to continue to push data into them.

The six add operations that increment elements of the
result run in a temporally interleaved way. There is no
race condition. The additions occur in a nondeterministic
order. But there is no danger of a data race, and no
locks need be acquired, as the hardware handles the
interleaving, working on only one thread at a time.

In order to return control to the invoking task (called
bicg here in the code), we need to ascertain that all five
adds are done. This is done with a small tree of two-way
barriers implemented by unblock and activate actions.

2) SpMV (2D): We sketch an implementation of
SpMV (u = Av as above) for a 9-point stencil in 2D.

For the 2D problem we map a rectangular region of
the mesh of v to each core, and store all elements of
the corresponding columns of A. After multiplication of
the local v with the local A we have generated products
in an output halo that must be sent to neighboring tiles.
We accomplish this output-halo exchange with sends of
fabric tensors in threads that arrive and feed data into
addition threads. We complete a round of send and add
in one direction, then a round for the other direction, and

Fig. 5. Tessellation routing pattern for SpMV: a single core pushes its
content into adjacent cores’ fabric router using a single communication
channel. Messages from the four neighbors arrive on four distinct
channels and are processed by corresponding threads. This allows us
to achieve high fabric utilization due to the fact that we can send the
data in 4 directions in a single cycle. WSE allows the fabric to be
dynamically reconfigured. Such adaptive topology plays a significant
role in offloading routing logic from cores, which can be used primarily
for computation.

in this way avoid communication along diagonals of the
tile grid.

The efficiency of this approach is approximately the
same as for the 3D mapping discussed above. On one
hand, because all 9 multiplies and adds for a given ele-
ment of the vector x are performed on the same core, we
are able to use the fused multiply-accumulate instruction.
The 18 flops performed take place in three machine
cycles which increases utilization over the 3D mapping
which performed only adds or only multiplies on any
given cycle. However, the summation work for the
halos are redundant operations that offset this efficiency.
Furthermore, although we perform multiplication along
the main diagonal, we should not receive performance
credit for this operation because most problems will
precondition the main diagonal to unity.

The local memory in each core is sufficient to store a
matrix, halo, and vector (as well as all terms needed
for BiCG) to hold a sub-block up-to 38x38 in size,
corresponding to geometries of 22800x22800. Efficiency
remains high for smaller problems. When a core holds
only an 8x8 region in local memory (4800x4800 mesh-
points), the overhead remains less than 20%.

3) AllReduce: BiCGStab requires inner products of
vectors distributed across the whole fabric. This requires
an AllReduce operation: the results of local dot products
need to be summed across all cores and then the result
broadcast back to all cores. Because we did not use a
communication-hiding variant of BiCGStab, this collec-
tive operation is blocking, so we minimized latency.

The routing configuration for this task is illustrated in

V FLIP

V REP
Y/2-1

H REP
X/2

V REP
Y

V STACK

V REP
Y/2-1

H REP
X/2

V REP
Y

V FLIP

V STACK

H STACK

a)

b)

Fig. 6. (a) The AllReduce operation routing rules for X=8, Y=8. Blue:
Horizontal Reduction. Green: Vertical Reduction. Yellow/Cyan/Purple:
4:1 Reduction to a single core. Red: Broadcast result to entire array.
(b) Route construction. The code builds a DAG of geometry operations
(rotation, mirror image flip, and horizontal/vertical stacking) whose
leaves are single-tile router configurations, and the DAG is compiled
into the fabric routing tables.

Figure 6. The reduction is performed in parallel along
fabric rows, then along two central columns. When the
reduction starts, each core sends its value toward the
center of its row. On each successive cycle the two
central cores of that row receive a datum and accumulate
it into a local sum. We use two cores in the center,
each receiving input from one direction at the rate of
one datum per cycle. Similarly, the partial sums are
reduced along two columns towards the central four
cores that finally reduce their content to a single core.
The reason for the use of pairs of cores is core-to-
fabric injection/extraction bandwidth: a core can add
two 32-bit quantities per cycle but can receive only
one from the fabric. The broadcast is done in reverse,
sending the result along two central columns and then
across all rows. The single cycle-per-hop latency of
the interconnect allows us to implement the AllReduce
operation in a cycle count only about 10% greater than
the diameter of the system.

To control the growth of roundoff error, we use a
hardware inner product instruction that employs mixed
16-bit multiply/32-bit add precision, and we do the

AllReduce at 32-bit precision.

Operation Single precision Half/single mixed
(x Count) SP + SP × HP + HP × SP +
Matvec (x2) 12 12 12 12 0
Dot (x4) 4 4 0 4 4
AXPY (x6) 6 6 6 6 0
Total 22 22 18 22 4

TABLE I
OPERATIONS PER MESHPOINT PER ITERATION

4) AXPY: These operate on core-local fp16 data and
use the four-way SIMD capability.

V. MEASURED RESULTS

We implemented BiCGStab for a 600 × 595 × 1536
mesh on a CS-1 machine available to us for experiments
that has a 602 × 595 compute fabric. We measured the
wall clock time between consecutive BiCGStab itera-
tions; the mean differences across 171 iterations was
28.1 microseconds. The standard deviation is about 0.2%
of the mean.

Per Table I, there are 44 operations per meshpoint
per BiCGStab iteration. Thus, we perform 44 × 600 ×
595×1536 operations per iteration floating-point, which
works out to an achieved performance of 0.86 PFLOPS.
As pointed out in Table II, we are using 16-bit floating
point for 40 operations per iteration per meshpoint, and
32-bit floating point for the remaining 4 operations.

A. A strong scaling comparison

To make a comparison to CPU-based clusters, we
solved a comparable problem, the BiCGstab solution of a
nonsymmetric linear system arising from a 7-point sten-
cil finite volume approximation; this was done within the
NETL MFIX code while computing a lid-driven cavity
flow. We have data for two problem sizes, both 3703 and
6003. For the larger mesh, the performance for systems
with numbers of cores ranging from 1024 to 16384
is shown in Figure 8. These are 64-bit floating point
results obtained on Joule 2.0, the NETL supercomputer,
which is based on HPE ProLiant servers, Intel Xeon
Gold 6148, 20-core, 2.4GHz processors, using the Intel
Omni-Path interconnect. (In a Navier-Stokes solver like
MFIX, four linear systems are solved at every time step,
one for each of the solution variables, three velocity
components u, v, w and pressure p.) There are some
differences between the behavior for the pressure and
the momentum equations, but these differences do not
change the main points.

The failure to scale beyond 8K cores on the smaller
mesh highlights the difficulty of achieving strong scaling
on a cluster.

For the larger mesh, time per BiCGstab iteration on
Joule ranges from 75 ms on 1024 cores, and scales
down to about 6 ms on 16K cores. This is about 214

Fig. 7. Scaling of solve time on a cluster, 3703 mesh

Fig. 8. Scaling of solve time on a cluster, 6003 mesh

times more than the 28.1 microseconds per iteration that
we measured on the CS-1, on a problem with more
than twice as many meshpoints. (On the other hand, the
arithmetic is four times wider on Joule.)

It is interesting to try to understand why this striking
difference arises. A first explanation is that there are a lot
more cores on the CS-1. The cores are not equal in their
performance, however, and the peak performance of 16K
cores on Joule at 64-bit is about 40 percent of the CS-1
peak at 16-bit. This explains some of the difference, but
there is still a large performance gap per core.

The difference in memory technology is clearly im-
portant. A single 20-core Xeon 6148 socket has 27.5 MB
of last-level (L3) cache, and at 16K cores the aggregate
cache is 22.5 GB, substantially more than the memory of
the CS-1. But the Xeon caches seem to be less effective
at deriving performance from the available SRAM. We
suspect that this may be because the L3 cache is shared
by the 20 cores on the socket, and does not have enough
port bandwidth to satisfy all of their needs when, as in
this case, there will be little temporal data reuse in the
L1 and L2 caches. The CS-1 SRAM is not shared, and
each core has access to an array of small SRAM banks
that deliver 16 bytes (read) and 8 bytes (write) per clock
to the single core, which is enough to support the full

compute rate for an operation like an AXPY that streams
two vectors from memory and streams the result vector
back.

VI. CFD ON THE CS-1

Real world applications exhibit complexity not found
in simple incompressible Euler flow in rectangular geom-
etry; they feature complex geometries with heat, mass,
compressibility, stretched meshes, and even structure
interactions. These all complicate the steps to form the
matrices of the linear systems. They account for 30 to
50 percent of the operation count. And they add to the
memory requirement—memory will limit the maximum
problem size that can be solved on CS-1. Thus, we have
to look at what happens outside the linear solver. We
analyze next the work and memory required in a realistic
case.

Algorithm 2 SIMPLE in MFIX
1: Initialization (calculate shear and time dependant

source)
2: for i = 0,1,2, ... do
3: for ii = u,v,w do
4: Form Momentum
5: BiCGStab Solve
6: end for
7: Form Continuity
8: BiCGStab Solve Continuity
9: Field Update (u, v, w, p)

10: Calculate Residual
11: end for

As a case study, we examine the Multiphase Flow
with Interphase eXchanges (MFIX) CFD code from the
National Energy Technology Laboratory. In particular,
we examine the newest variation on the code MFIX-
TF, which is a fully vectorized formulation. MFIX is a
general purpose, Cartesian mesh, multi-phase CFD code.
The code solves the fully compressible Navier-Stokes
equations using an adapted version of the Semi-Implicit
Method for Pressure Linked Equations (SIMPLE). In
order to show that a significant problem can be solved,
we discuss a single phase, compressible, viscous fluid
problem without energy and species equations. It is
straightforward to extrapolate the allowable size and
arithmetic intensity at any level of complexity following
the methodology outlined below.

A. Performance and accuracy of CFD on the CS-1

The operations needed to construct the coefficient
matrix and source vector depend on the discretization
scheme. First order upwinding is the most common
scheme and was used to determine operation types
and counts. The necessary operations can be grouped

into vector merge operations, floating point (FLOP)
operations (multiply, add, subtract), square root, divide,
and neighbor transport operations. The cycle counts for
each operation have been estimated and the operations
counted for all steps outside of the linear solver in the
SIMPLE algorithm per Z meshpoint. The residual calcu-
lations were ignored because they involve dot products
and a few scalar calculations. The analysis revealed that
they could be overlapped with other computations.

SIMPLE Step Merge FLOP √ ÷ xᵀ Total
Initialization 2 - 9 35-47 0 0 8 45-64
Momentum 25-153 18-25 13 15-16 6 79-213
Continuity 8-45 13-18 0 15-16 2 37-81
Field Update 0 3-5 0 0 1 4-6

TABLE II
CYCLES PER MESHPOINT FOR SIMPLE, EXCLUDING THE SOLVER.

For typical flow problems, the number of simple itera-
tions ranges from 5-20 per time step, the linear solver is
limited to 5 iterations for transport equations and 20 for
continuity equation. Based on the performance estimates,
the wall time per time step was estimated to be roughly
two microseconds per Z meshpoint. Assuming a problem
size of 600x600x600 and 15 simple iterations per time
step, and we expect to achieve between 80 and 125
timesteps per second. This places the likely performance
of CS-1 above 200 times faster than for MFiX runs
on a 16,384-core partition of the NETL Joule cluster.
Furthermore, our experiments indicate that little more
performance can be gained by scaling the cluster with
fixed mesh size.

B. Accuracy achieved with mixed precision arithmetic

There is already extensive work on the use of lower
precision in linear algebra and other areas. Ongoing re-
search has explored how full precision can be maintained
while doing most work in lower precisions [6]–[8]. For
linear systems, variants of iterative refinement have been
successful.

We have assessed the quality of solution we obtain
using mixed 16 and 32-bit precision. We took a linear
system from the timestep discretization (in the NETL
code MFIX) of the momentum equation for a velocity
component on a 100 × 400 × 100 mesh. The measured
normwise relative residuals with mixed and 32-bit are
shown in Figure 9. Up to iteration 7 the mixed preci-
sion implementation tracks the 32-bit, but then fails to
reduce the residual further. With this precision, machine
precision is about 10−3. We have observed this accuracy
for very well conditioned systems. Here, the growth of
rounding errors during the iterative solve explains the
loss of an additional factor of 10, leading to a plateau
at a relative residual of 10−2. We have not yet tested
whether this accuracy is acceptable in the MFIX code.

2 4 6 8 10 12 14
IteUatiRns

10−3

10−2

10−1

100

Re
la

tiv
e

nR
Um

 R
I U

es
id

ua
l

8_g_0

6ingle SUecisiRn
0ixed sS/hS

Fig. 9. Normwise relative residual in mixed and 32-bit arithmetic.
Mixed precision plateaus as expected near its machine precision.

We expect that for some realistic situations, mixed
precision solvers are usable as is; in others they may
need to be coupled with a correction scheme such as
an iterative refinement or an outer iteration that solves a
nonlinear system; and in other situations one may need
to use higher precision arithmetic. There is interest in
finding the limits. In a 2018 Gordon Bell Finalist the
authors demonstrate a nonlinear finite-element solver in
which linear systems are solved using mixed-precision
implementations based on fp16 arithmetic [9]. A large-
scale example is NASA’s Fun3d code. NASA is using
Fun3d to simulate the powered supersonic entry of
manned space vehicles in the Martian atmosphere. To
reduce runtimes, NASA has implemented cast in place
kernels to convert fp32 values to fp16 so that they can
run the Red-Black Gauss-Seidel linear solver in fp16
and transition to using Tensor Cores. They reported no
ill effects on convergence or stability [10].

VII. RELATED WORK

In contrast to this work, there has been extensive
work on specialized machine aimed at particular use
cases. Examples include Anton [11] and the MDGRAPE
systems [12]. This work stands in stark contrast to
ours. We explain that a new approach at the hardware
layer provides a breakthrough in memory bandwidth that
make a fully general purpose system, the CS-1, capable
across the spectrum of arithmetic intensity. The efforts
we cite provide specialized machines that are ordinary
at the hardware level and that draw their advantages
from architectural specialization, and that are aimed at
molecular dynamics, which lives at the high end of the
intensity spectrum.

The issue of memory and fabric communication in
PDE and Krylov subspace solvers remains unresolved
for conventional systems. Indeed it has spawned research

on communication avoiding methods [13], [14]. These
can produce incremental improvements, but memory
bandwidth remains a performance limiting issue.

VIII. DISCUSSION AND OPEN QUESTIONS

A. Applications

We have shown here that the approach of keeping all
the processing, data, and communication on one silicon
wafer can, when a problem fits on the wafer, eliminate
memory bandwidth and greatly reduce communication
as performance limits, yielding dramatic speedup and al-
lowing accurate real-time simulation. Before now, prac-
titioners have had to choose between very fast reduced
order/fidelity models which often lack the resolution
needed to be really useful and high-resolution simula-
tions which lack the speed to be practical.

To our knowledge, this is the first ever system capable
of faster-than real-time simulation of millions of cells
in realistic fluid-dynamics models. In real-time appli-
cations, memory footprints are normally tractable in
order to achieve the mandatory real-time performance.
To take one example, it is quite difficult and potentially
dangerous to land a helicopter on the windy flight deck
of an aircraft carrier, due to the complexity and speed
of the air flow. In his 2017 PhD thesis [15], Oruc
noted that “Especially, when the aircraft flies in the
near vicinity of the superstructure of the ship, the pilot
workload increases seriously.” He examines the potential
for semi-automatic flight control with in the loop CFD.
He found that modest meshes of in the neighborhood of
one million cells can provide adequate accuracy, but that
the necessary real-time performance is hard to achieve
on a cluster of multicore CPU systems. We give other
examples of compact applications in the section below.

Cheap simulations mean that they could be treated as
an input to a neural network residing in CS-1 as well and
train a model approximating them. It has been shown that
combining machine learning with traditional simulation
accelerates scientific experiments [16]. Another impli-
cation is that we could simulate an event on demand
instead of storing previous experiments. This solution
makes interactive fluid dynamics a reality.

In NETL’s application domain, real-time simulation
can enable physics-based online equipment monitoring,
cyber-physical security, equipment failure prediction, dy-
namic baseload power following, fixed asset turn down,
and renewable integration. It may become less expensive
to rerun simulations than to save and retrieve information
from storage. And, since high efficiency operation of
energy systems often depends on operating near failure
points, the advent of faster than real time, high resolution
simulations may make it safe to achieve unprecedented
levels of efficiency.

B. Memory capacity

There are compelling HPC use cases for the CS-1,
notwithstanding its modest memory capacity. In the he-
licopter example of the last section and in three examples
below, extraordinary performance in a limited memory
footprint is of great value. In these examples a great
many spatially compact problems must be solved, for
purposes that span uncertainly quantification, to long
time duration simulations involving perhaps millions
of timesteps, to real-time deployments with in-the-loop
models. None of these use cases can be addressed using
systems based on low-performance, low cost-per-byte
memory.

The first use case is in automated exploration of
design spaces. In the work of Madsen et al [17], the
first attempt at 3D simulation-based shape optimization
of whole wind turbine rotors, the wind turbine scale
was 10MW. Richardson extrapolation showed that the
number of cells needed is in the 14-50M range to
get estimates within 0.5% to 2%. In the optimization
setting, simulations have to be done sequentially, as
the optimizer depends on gradients around simulation
runs. There can be hundreds to thousands of simulations
to complete a shape optimization. This type and scale
of problem is also common in aircraft and automotive
design optimization. Today these optimizations are not
routinely done due to the compute times.

Second, as computational models play a growing role
in industrial and societal decision-making, the confi-
dence worthiness of these models has to be quantified.
Uncertainty quantification (UQ) relies on the assessment
of the effect of model and parameter uncertainty, usually
requiring hundreds or thousands of simulations to sweep
relevant ranges of parameters. For example, to predict the
performance uncertainty of a 1MW pilot scale carbon
capture system providing 90% capture efficiency with
95% confidence [18], a total of 1,505 simulations were
run, each needing about 600 seconds of simulation to
reach steady state. This kind of simulation campaign is
currently achievable only by simplifying the geometry
(two-dimensional geometry), and using filter models to
account for the coarse meshes.

Finally, consider a study by Jasak et al [19] of
commercial ship modeling in which speed rather than
capacity is the issue. The solution time on a moderately
sized computer system typical in engineering was as
much 83 hours for a test case involving 11.7 million
finite volume cells. Such a turnaround time is clearly a
burden in design optimization and design space explo-
ration.

Our goal is not to tout the CS-1 specifically; rather
we want to illuminate the benefits of the wafer-scale
approach. Recall that the CS-1 is the first of its kind; we
expect that memory limits will recede over time with

ongoing technological and engineering developments. A
technology shrink from the 16 nm to 7 nm technology
node will provide about 40 GB of SRAM on the wafer
and further increases (to 50 GB at 5 nm) will follow.
These changes will help, and while they don’t produce
petabyte capacities, there are new directions that the
hardware can take, involving systems that go beyond a
single wafer and a single wafer type, that can add much
more. Solutions involving the clustering, with sufficient
bandwidth, of several wafer-scale systems is certainly a
possibility.

ACKNOWLEDGEMENT

The authors would like to thank Natalia Vassilieva for
initiating the collaboration between Cerebras Systems
and NETL and for her subsequent help with the project.

REFERENCES

[1] M. A. Heroux and J. Dongarra, “Toward a new metric for ranking
high performance computing systems.” Sandia National Labora-
tory Technical Report, no. SAND2013-4744-456352, 2013.

[2] J. D. McCalpin, “SC16 Invited Talk: Memory
Bandwidth and System Balance in HPC Sys-
tems,” http://sc16.supercomputing.org/2016/10/07/
sc16-invited-talk-spotlight-dr-john-d-mccalpin-presents-memory-bandwidth-system-balance-hpc-systems/
index.html, 2016.

[3] Cerebras Systems, “Wafer-Scale Deep Learning, Presenta-
tion at HotChips 2019,” https://www.youtube.com/watch?v=
QF9oObzMBpU&t=3715.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst,
Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. Philadelphia, PA: SIAM,
1994.

[5] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly
converging variant of bi-CG for the solution of nonsymmetric
linear systems,” SIAM Journal on Scientific and Statistical
Computing, vol. 13, no. 2, pp. 631–644, Mar. 1992. [Online].
Available: https://doi.org/10.1137/0913035

[6] E. Carson and N. J. Higham, “Accelerating the solution of linear
systems by iterative refinement in three precisions,” SIAM J. Sci.
Comput., vol. 40, no. 2, p. A817–A847, 2018.

[7] C. Rubio-González, Cuong Nguyen, Hong Diep Nguyen, J. Dem-
mel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough,
“Precimonious: Tuning assistant for floating-point precision,” in
SC ’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
2013, pp. 1–12.

[8] A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. To-
mov, and J. Dongarra, “The design of fast and energy-efficient
linear solvers: On the potential of half-precision arithmetic and
iterative refinement techniques,” in Computational Science –
ICCS 2018, Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya,
M. H. Lees, J. Dongarra, and P. M. A. Sloot, Eds. Cham:
Springer International Publishing, 2018, pp. 586–600.

[9] T. Ichimura, K. Fujita, T. Yamaguchi, A. Naruse, J. C. Wells,
T. C. Schulthess, T. P. Straatsma, C. J. Zimmer, M. Martinasso,
K. Nakajima, M. Hori, and L. Maddegedara, “A fast
scalable implicit solver for nonlinear time-evolution earthquake
city problem on low-ordered unstructured finite elements
with artificial intelligence and transprecision computing,” in
SC’18 Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis,
ser. SC ’18. IEEE Press, 2018. [Online]. Available: https:
//doi.org/10.1109/SC.2018.00052

[10] A. Korzun, E. Nielsen, A. Walden, B. Jones, J. Carlson, P. Moran,
C. Henze, T. Sandstrom, M. Zubair, and J. Luitjens, “Landing
on mars : Petascale unstructured computational fluid dynamics
on summit,” Nvidia GTC. https://developer.nvidia.com/gtc-dc/
2019/video/DC91220, 2019.

[11] D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts,
J. C. Chao, M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton,
A. Forte, J. Gagliardo, G. Gill, B. Greskamp, C. R. Ho, D. J.
Ierardi, L. Iserovich, J. S. Kuskin, R. H. Larson, T. Layman,
L.-S. Lee, A. K. Lerer, C. Li, D. Killebrew, K. M. Mackenzie,
S. Y.-H. Mok, M. A. Moraes, R. Mueller, L. J. Nociolo, J. L.
Peticolas, T. Quan, D. Ramot, J. K. Salmon, D. P. Scarpazza,
U. B. Schafer, N. Siddique, C. W. Snyder, J. Spengler, P. T. P.
Tang, M. Theobald, H. Toma, B. Towles, B. Vitale, S. C. Wang,
, and C. Young, “Anton 2: Raising the bar for performance and
programmability in a special-purpose molecular dynamics super-
computer,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC14). IEEE, 2014, p. 41–53.

[12] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
“MDGRAPE-4: a special-purpose computer system for molecular
dynamics simulations,” Philosophical Transactions A: Mathemat-
ical, physical, and engineering sciences, vol. 372, no. 2021, 2014.

[13] M. Hoemmen, “Communication-avoiding Krylov subspace meth-
ods,” Ph.D. dissertation, The University of California, Berkeley,
2010.

[14] E. C. Carson, “Communication-avoiding Krylov subspace meth-
ods in theory and practice,” Ph.D. dissertation, The University of
California, Berkeley, 2015.

[15] I. Oruc, “Towards real-time pilot-in-the-loop CFD simulations
of helicopter/ship dynamic interface,” Ph.D. dissertation, The
Pennsylvania State University, 2017.

[16] C. Huntingford, E. S. Jeffers, M. B. Bonsall, H. M.
Christensen, T. Lees, and H. Yang, “Machine learning
and artificial intelligence to aid climate change research
and preparedness,” Environmental Research Letters, vol. 14,
no. 12, p. 124007, nov 2019. [Online]. Available: https:
//doi.org/10.1088%2F1748-9326%2Fab4e55

[17] M. H. A. Madsen, F. Zahle, N. N. Sørensen, and J. R. R. A.
Martins, “Multipoint high-fidelity CFD-based aerodynamic
shape optimization of a 10 MW wind turbine,” Wind Energy
Science, vol. 4, no. 2, pp. 163–192, 2019. [Online]. Available:
https://doi.org/10.5194/wes-4-163-2019

[18] Z. Xu, C. Lai, P. W. Marcy, J.-F. Dietiker, T. Li, A. Sarkar,
and X. Sun, “Predicting the performance uncertainty of a
1-MW pilot-scale carbon capture system after hierarchical
laboratory-scale calibration and validation,” Powder Technology,
vol. 312, pp. 58–66, 2017. [Online]. Available: https://doi.org/
10.1016/j.powtec.2017.02.027

[19] H. Jasak, V. Vukčević, I. Gatin, and I. Lalović, “CFD
validation and grid sensitivity studies of full scale ship self
propulsion,” International Journal of Naval Architecture and
Ocean Engineering, vol. 11, no. 1, pp. 33–43, 2019. [Online].
Available: https://doi.org/10.1016/j.ijnaoe.2017.12.004

http://sc16.supercomputing.org/2016/10/07/sc16-invited-talk-spotlight-dr-john-d-mccalpin-presents-memory-bandwidth-system-balance-hpc-systems/index.html
http://sc16.supercomputing.org/2016/10/07/sc16-invited-talk-spotlight-dr-john-d-mccalpin-presents-memory-bandwidth-system-balance-hpc-systems/index.html
http://sc16.supercomputing.org/2016/10/07/sc16-invited-talk-spotlight-dr-john-d-mccalpin-presents-memory-bandwidth-system-balance-hpc-systems/index.html
https://www.youtube.com/watch?v=QF9oObzMBpU&t=3715
https://www.youtube.com/watch?v=QF9oObzMBpU&t=3715
https://doi.org/10.1137/0913035
https://doi.org/10.1109/SC.2018.00052
https://doi.org/10.1109/SC.2018.00052
https://developer.nvidia.com/gtc-dc/2019/video/DC91220
https://developer.nvidia.com/gtc-dc/2019/video/DC91220
https://doi.org/10.1088%2F1748-9326%2Fab4e55
https://doi.org/10.1088%2F1748-9326%2Fab4e55
https://doi.org/10.5194/wes-4-163-2019
https://doi.org/10.1016/j.powtec.2017.02.027
https://doi.org/10.1016/j.powtec.2017.02.027
https://doi.org/10.1016/j.ijnaoe.2017.12.004

	I Introduction
	II The CS-1 Wafer Scale Engine
	II-A Architecture

	III The BiCGstab Method
	IV Mapping BiCGstab to the CS-1
	IV-1 SpMV (3D)
	IV-2 SpMV (2D)
	IV-3 AllReduce
	IV-4 AXPY

	V Measured Results
	V-A A strong scaling comparison

	VI CFD on the CS-1
	VI-A Performance and accuracy of CFD on the CS-1
	VI-B Accuracy achieved with mixed precision arithmetic

	VII Related Work
	VIII Discussion and Open Questions
	VIII-A Applications
	VIII-B Memory capacity

	References

