Tehnocultura SciCast 003 a fost înregistrat duminică, în data de 1 mai 2016, în Londra, Marea Britanie.
Subiectul principal al acestui episod: electronul și utilizările lui.
Audio podcast pe iTunes:
https://itunes.apple.com/ro/podcast/tehnocultura/id929951093?mt=2
Video pentru electroni:
Nu poți subestima importanța electronilor în toate procesele vieții și în existența Universului însuși.
De exemplu, electronii sunt folosiți în ceea ce se numește în lumea chimiei reacție redox sau reducere și oxidare. Oxidare înseamnă că se pierd electroni în rea©tia chimică iar reducere înseamnă că se primesc electroni. Denumiri ciudate, dar asta avem, cu asta defilăm.
Acest redox are loc în corpul nostru, atunci când topim metale sau în cazul fotosintezei. Redoxul nu este decât unt ermen care ne spune că electronii sunt transportați de la un atom la altul. In lumea planetelor cel mai cunoscut proces redox este chiar fotosinteza. Enciclopedia Britannica are un video simpluț despre cum are loc fotosinteza.
Desigur, procesul este mult mai complicat și trebuie văzut în filmul de făcut de cei de la Encliclopedia Medicală din Franța:
Practic, plantele au în celule din frunze organite celulare numite cloroplaste. Cloroplastele au fost la origine cianobacterii care au intrat în simbioză cu organisme celulalre eucariote. Cloroplastele sunt asemeneni mitocondriilor, care au fost la rândul lor bacterii care au intrat în simbioză cu celulele eucariote animale. Evoluția nu ar fi putut eista dacă nu ar fi existat acea simbioză petrecută în urmă cu miliarde de ani. Dar despre evoluție vom vorbi într-un episod viitor.
Revenind la operatiile de schimb de electroni în cadrul fotosintezei, în interiorul cloroplastelor exista niște discuri numite tilacoide în membrana cărora are loc acel schimb de electroni. Atunci când lumina lovește anumite părti ale membranei tilacoidelor numite fotosistemul 1 și 2, care conțin molecule de clorofilă. Lumina este absorbită de electronii din clorofilă, apoi acei electroni cu surplus de energie sunt expulzați din clorofilă și din fotosistemul 2 și transportati către fotositemul 1. Energia lor este folosită pentru a aduce ioni de hidrogen din celulă în interiorul acestor tilacoide și pentru a fi „donați” către o moleculă numită NADP, care va deveni NADPH și va ajuta în cadrul fotozintezei la un moment ulterior.
Și aici vine procesul interesant: dat fiind că electronii sunt pierduți din clorofilă în felul acesta ei trebuiesc recuperati de undeva. Din interiorul tilacoidelor, pline, de altfel cu apă, se aduc molecule de apă în zona fotosistemului și are loc procesul de fotoliză, adică apa este descompusă în oxigen și hidrogen. În acest fel atomul de oxigen rezultat se unește cu un alt atom de oxigen și obtinem molecula atât de necesara respiratiei noastre. Electronii sunt furati, în cadrul fotolizei, de la atomii de hidrogen care, devin, în acest fel ioni pozitivi folosiți pentru rearea unei proteine numite ATP care va ajuta în crearea de fructoză și amidon înspre finalul fotosintezei.
După cum se poate observa din procesul fotosintezei, electronii sunt furati de la clorofilă, sunt folosiți apoi pentru a aduce ioni de hidrogen în tilacoide și pentru a crea NADPH iar apoi sunt recuperați prin fotoliză, în urma căreia se creează moleculele de oxigen de care avem atât de multă nevoie.
E simpatică melodia făcută de cei de la Science Music Videos despre lanțul de transport de electroni ce are loc în cadrul cloroplastelor din plante sau din mitocrondiile din celulele animale.
Despre operațiile redox poți afla mai multe și din filmul făcut de cei de la Crash Course Chemistry:
Reținem redox folosing acronimul englez: OILRIG:
– OIL = oxidation is losing (electrons)
– RIG = reduction is gaining (electrong)
Tot așa am ținut minte care base se potrivesc cu care în cadrul ADN-ului: AT cu CG sau adenină cu timină și citozină cu guanină:
– AT = Apple in Tree
– CG = Car in Garage
Fun is fun 😀
Desigur, electronii sunt mult mai atractivi atunci când te uiți la tehnologia din jur. Un documentar făcut prin anul 1943 explica modul de functionare a diodelor care erau la începuturi create din tuburi vidate. Cu asemenea tuburi vidate numite diode poți rectifica AC->DC, poți aomplifica semnalele radio, poți genera curent alternativ și semnale radio, poți controla curgerea curentului electric în funcție de parametri aleși de tine, poți transofrma lumina în curent electric, poti transofrma curentul elecric în lumină și este vorba aici de bine-cunoscutul tub catodic din televizoarele ce le aveam noi prin anii 90.
Ori poate fi folosita pentru a genera raze X: electronii sunt accelerați la viteze mari de la catodul fierbinte și lovesc anodul, proces prin care se generează raze X.
Ce știm despre electroni
– particule elementare cu volum zero, dar care nu se pot pune în contact unii cu alții (Veritasium), trebuie energie foarte mare pentru a pune 2 electroni în contact unul cu altul
– electronii sunt indestructibili, viață mai lungă decât cea a universului (6,6 * 10^28 ani)
– eV = 1,6 *10^-19 Jouli, cu V mare ( Celsius, Kelvin, se scriu cu litere mari pentru ca sunt create în onoarea oamenilor de știință)
– absorb și emit lumină, exemplu fiind fotoelectronii, generarea de lumină în multe benzi
– electronii se comporta ca particule, dar și ca unde (Sixty Symbols – electron)
– are frați: muon, tau
– spin 1/2h (moment unghiular)
– magnetismul este generat de electroni
– chiraliatea sau helicitatea electronilor, dacă sunt strângaci sau dreptaci (Sixty Symbols – Left handed electrons)
– masa de 9,1 * 10^-31 kg
– este lepton (fermion = leptoni si barioni, barioni = protoni, neutroni ). Fermionii nu pot ocupa același loc în spațu, dar bosonii pot ()exemplul luminii)
– antiparticula este pozitronul (folosit în PET scans)
– electronul este sferic
– electronii pot fi creati din raze gamma de 1 MeV atunci când acele raze lovesc o folie de aur și se generează perechi electroni-pozitroni
– electronii se resping într-atât de mult încât în piticele albe ei se opun compirmării stelei la dimensiuni mai mici
– electronii se învârt în jurul nucleului cu o viteză de 2000 km/s și fac 6,5 * 10^15 rotatii într-o singură secundă
– corpul uman are undeva pe la 21 de grame de electroni în el (doar un mic procent din masa noastră ine de la bosonul Higgs)
– raza electronului este de 2,8 femtometri sau 2,8 * 10^-15 m (video Tehnocultura)
– principiul excluziunii al lui Pauli: doi electorni nu pot ocupa aceeași stare cuantică, adică pe aceeași obită nu pot fi doi electroni cu acelasi spin (unul trebuie să aibă 1/2 și celălalt trebuie să fie – 1/2)
– folosind explicația particulelor virtuale aflăm că electronul se învărte în jurul axei proprii, dar și că are loc o precesie, o schimbare a unghiului axei de rotatie a elecronului (cum face și planeta noastră: se rotește în jurul axei proprii, dar axa proprie își schimbă unghiul în mod constant și descrie un cerc complet odată la 26 000 de ani)
– generează un câmp electric și, dacă este în mișcare, generează și un câmp magnetic (electronii în mișcare elibereaza unde electromagnetice, generează fotoni, legea lui Wein), materia în sine genereaza unde electromagnetice (black body radiation)
– electronii au fost generați în Big Bang prin procesul de producere de perechhid e aprticule electron-pozitron. Evenimentul nuit asimetria barionică a facut ca să existe mai multa materie decât anti materie atât în cazul electronilor, cât și în cazul protonilor. Sarcina electrică totală rezultața a este zero. Electronii mai sunt generați și azi din unde gamma sau din descompunere radioactivă beta minus prin care un neutron se transofrmă într-un proton prin eliberarea de un electron și un electron antineutrino. Razele cosmice, la contactul cu atmosfera, generează muoni care apoi de descompun în electroni, electron antineutrini și în neutrini miu
–
Istorie
Aristotel credea că poți divia materia la infinit, pe când Democritus zicea că poți ajunge doar până la o bucațică de bază numită de el atom.
Apoi John Dalton a zis că materia este compusă din atomi indivizibili și indestructibili, dar și că toți atomii aceluiași element se comporta exact la fel și că poți folosi atomi de la elemente diferite pentru a crea substanțe compuse.
Pholosoful naturalisl britanic Richard Laming a imaginat exitența unei sarcini electrice fundamentale, indivizibilă prin 1838 iar fizicianul irlandes George Johnstone Stoney a numit acea sarcină fundamentală „electron” prin 1891.
Termenul de „electron” provine de la grecescul elecktron care înseamnă „chihlimbar”, acea rășină fosilizată care putea fi electrificată prin frecare și unde s-a descoperit pentru prima dată efectul triboelectric, adică transferul de sarcini electrice prin frecare. Prin frecare u lână sau blană de animal chihlimbarul atrage bucăți mici de material. Același lucru îl putem face cu un liniar de plastic frecat de păr care apoi atrage bucăți mici de hârtie.
Legat de electron, prin 1600 William Gilbert a inventat termenul electricus pentru a explica efectul triboelectric.
J. J. Thompson, 1896, a făcut un experiment cu un tub vidat la care a adăugat două placi metalice pozitive. Atunci când electornii ieșeau din catod ei erau atrași de către plăcile cu sarcină pozitivă. Așa și-a dat seama că avem de-a face cu o nouă unitate indivizibilă care are sarcină negativă și care este de 2000 de ori mai ușoară decât un ion de hidrogen care, știm azi, e compus doar dintr-un proton.
J. J. Thompson credea, de fapt, că atomul este compus din electroni care sunt înconjurati peste tot de ceva pozitiv. De ce așa? Pentru că atomul este neutru din punct de vedere electric, așa ca daca avem electroni în atomi, în mod sigur trebuie să avem și ceva pozitiv. Modelul lui era greșit pentur ca presupunea ca electronii sunt înconjurati de ceva pozitiv.
Ernest Rutherford, unul dintre studenții lui Thompson, a fost cel care a dovedit ca modelul atomic al profesorului său este incorect. Rutherford a făcut un experiment prin care particule alpha, adică nuclee de heliu, loveau o foița de aur. După aceste experiemnte concluzia lui, prin 1911, a fost că atomul trebuie să aiba particule pozitive în nucleul sau iar acel nucleau va contine, cel mai probabil, cea mai mare parte a masei atomului.
Robert Andrews Milikan a fost cel care a descoperit care este sarcina electrică a unui electron și anume 1,6*10^-19 Coulombi în urma multor experimente cu aparatul inventat de el. A decoperit că oricât de multe experimente face sarcina calculată era un multiplu de 1,6*10^-19 Coulmbi. Niciodată mai puțin. Și-a dat seama că aceea este o sarcină fundamentală numită azi sarcina electrică a electronului.
Niels Bohr a venit cu ideea, în 1913, că atomul este ca un sistem planetar în care electronii obitează în jurul nucleului. A fost cunoscut drept modelul Bohr at atomilor și este un model învechit.
Erwin Schrodinger este cel care a dus știința electronilro ami departe si a specificat faptul că electronii sunt niște unde stationare plasate la anumite distanțe față de nucleul atomului. Acest lucru înseamnă că electronii pot fi găsiți, cu o anumită probabilitate, doar în anumite zone în jurul nucleului.
Utilizări:
– cristalografie cu raze X
– radioterapie, unde tumorile sunt lovite cu fascule de electroni
– microscopul cu electroni prin care putem vedea atomii
– tuburi catodice, cum s-au folosit la TV-uri, și tuburi vidate pentru manipulare și amplificare de semnale radio
– curent electric, of course
– dispozitive electronice
–
Întrebarea săptămânii: de ce nu pot trece mâna prin perete?
În episodul 8 al emisiunii Tehnocultura, de la TVS Brașov, am avut chiar întrebarea aceasta.
Lumina este undă electromagnetică și, ca orice undă, poate trece prin alte unde sau chiar se poate combina cu alte unde.
In cazul materiei nu este la fel de simplu. Avem cazul gazelor și lichidelor care se pot amesteca. Este un mod de a spune că trec unele prin altele. In situația solidelor, precum este mâna ta, întrebarea ta se poate pune și în alt mod: de ce nu poate trece un atom prin alt atom?
Mâna ta este formată din atomi care sunt foarte apropiați unii de alții forțele intermoleculare nu permit mâinii să se descompună iar, la contactul cu peretele, au loc forțe de atracție și de respingere dintre atomii din mâna ta și cei din perete.
Forțele de respingere câștigă și astfel tu nu poți trece cu mâna prin perete. La întrebarea “poate trece atom prin atom” răspunsul este: nu. Datorită faptului că întregul spațiu din atom este umplut de câmp electrostatic prin care electronii sunt atrași de protonii din nucleu, nici o particulă cu sarcină electrică nu poate trece prin atom fără să interactioneze cu electronii de pe ultimul strat.
Spațiul mare pe care ni-l imaginăm între electroni și nucleul atomului este, de fapt, plin cu linii de câmp. Nu este gol. Singurele particule care pot trece printr-un atom sunt neutrinii care au masă foarte mică, de 1,5 milioane de ori mai mică decât electronii, și nu au sarcină electrică.
Ca și curiozitate, pentru a reuși să treci un atom prin altul tu fie ai nevoie de temperaturi de milioane de grade Celsius, specific reacției de fuziune din Soare, fie ai nevoie de forța unei stele neutronice în care atomii sunt zdrobiți până când neutronii sunt înghesuiți unii în alții.
Minutul de tehnologie
– GameRanx: ce este API-ul Vulkan pentru lumea gamerilor?
– Fully charged: Review autoturism electric BMW i3
– Amazon are probleme din cauza cumpăraturilor făcute de copii ce folosesc aplicatiile pentru Kndle
– TechQuickie: Cum funcționează AM și FM din lumea radio
– Tehnocultura.ro: Conversia analogic-digitală fără de care telefoanele ar fi inutile
– Mnot.net: diferenta dintre Http/2 și HTTP/1.1
– Microsoft testează stocarea datelor în ADN. Ar putea stoca un miliard de TB într-un gram de ADN.
– HomeCyberDefence: ce este doxingul și care sunt riscurile unui asemenea procedeu de a face rău?
– Techquickie: ce fel de SSD să cumperi?
–
Știri din lumea științei
– WhyEvolution is True: un website care prezintă copacul vieții în mod interactiv. / OneZoom.org
– TechCrunch: O istorie scurtă a companiei spatiale private numită SpaceX
– TWIS: soarecii de laborator sunt ținuți la temperaturi de 18-20 de grade pe când temepratura în care ei trăiesc în mod normal este de 28 de grade
– PNAS: pelvisul femeilor se micșoreaza odată cu trecerea anilor / PNAS doi: 10.1073/pnas.1517085113
– Mai mult CO2 duce la generarea de mai multa vegetație via Vocativ
– TVRplus.ro: Cristian Român și prof. dr Adrian Restian vorbesc despre lumea geneticii
– Hubble a descoperit că planeta pitică Makemake din centura Kuiper, zona Pluto, are un saltelit. Satelitul a fost numit MK2. / Sound of science
– Naure: a fost realizată o hartă a cuvintelor în interiorul creierului nostru. Video / Harta interactivă / Text
– ScienceMag: poveștile au mai mult de 6000 de ani vechime
– WhyEvolutionITrue: viața ar putea să fi început în urmă cu 4,1 miliarde de ani, nu cu 3,8 miliarde de ani conform unei noi analize a unei robe de zirconiu, cel mai vechi mineral de pe Terra
– ScienceAlert: când spermatozoidul se unește cu ovulul are loc o mică explozie
– Science Mag Podcast: despre patent-trolls
– NASA are o metodă prin care clădirile pot fi protejate în timpul cutremurelor prin folosirea de lichid poziționat în partea de sus a clădirilor
– TWIV: învața despre retrovirusuri și despre dispersia de bacterii prin folosirea uscătoarelor de mâini din toalete
–
Despre ce se mai discută în lumea pseudoștiinței?
– Chiropractician rupe spatele unui copil
– Părinții canadieni care nu au dus copilul la doctor și l-au tratat cu lucruri naturiste au fost condamnați pentru neglijență în a oferi îngrijiri copilului. Copilul a murit de meningită și avea numai 19 luni.
–
Bonus
– Fizică, animație: Cum funcționează condensatorii electrici?
– Aurora văzută din spatiul cosmic
– 5 lucruri pe care nu le știi despre Cernobâl
– Darwiniana.org: Metode de datare care confirmă existența evoluției
– Conpound chem: structura ADN-ului / premiile Nobel 2015
– Ce se întâmplă atunci când ești împușcat? Testat pe porci și filmat.
– Retraction Watch: anumite lucrări nu trebuie retrase, ci trebui prezentat mesaj de corectare
– TED, Tony Buffington: de ce se comporța pisicile într-un mod așa de ciudat?
– De ce există organisme multicelulalre?
– Experiment: care dintre becurile ce le folosim are lumină mai apropiata de cea a Soarelui?
– Unde se poate învăța comunicarea științei în lume
–
Vizitează
– Tehnocultura pe Facebook
– Grupul știința pe Facebook și Știința pe Facebook
– Grupul Știința, candelă în întuneric
– Grupul Pseudoștiința pe Facebook